skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reyes, Tania Pena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recombination directionality factors (RDFs) for large serine integrases (LSIs) are cofactor proteins that control the directionality of recombination to favour excision over insertion. Although RDFs are predicted to bind their cognate LSIs in similar ways, there is no overall common structural theme across LSI RDFs, leading to the suggestion that some of them may be moonlighting proteins with other primary functions. To test this hypothesis, we searched for characterized proteins with structures similar to the predicted structures of known RDFs. Our search shows that the RDFs for two LSIs, TG1 integrase and Bxb1 integrase, show high similarities to a single-stranded DNA binding (SSB) protein and an editing exonuclease, respectively. We present experimental data to show that Bxb1 RDF is probably an exonuclease and TG1 RDF is a functional SSB protein. We used mutational analysis to validate the integrase-RDF interface predicted by AlphaFold2 multimer for TG1 integrase and its RDF, and establish that control of recombination directionality is mediated via protein–protein interaction at the junction of recombinase’s second DNA binding domain and the base of the coiled-coil domain. 
    more » « less